Preparation of a New Type of Phosphazene High Polymers Containing 2,2'-Dioxybiphenyl Groups

Gabino A. Carriedo,* Lucía Fernández-Catuxo, F. J. García Alonso, Paloma Gómez-Elipe, and Pedro A. González

Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Oviedo 33071, Spain

Received December 12, 1995; Revised Manuscript Received May 6, 19968

ABSTRACT: The direct reaction of [NPCl₂]_n with the difunctional reagent 2,2'-dihydroxybiphenyl (HOC₆H₄C₆H₄OH) and K₂CO₃ in tetrahydrofuran gave soluble linear phosphazene high polymers instead of the expected cross-linked products. The reaction of [N₃P₃Cl₆] with 1, 2, or 3 equiv of HOC₆H₄C₆H₄OH and K₂CO₃ in acetone gave the known spiro derivatives [N₃P₃Cl₄(O₂C₁₂H₈)], [N₃P₃Cl₂(O₂C₁₂H₈)₂], and [N₃P₃-(O₂C₁₂H₈)₃] without formation of bridging products, and the dichloro derivative reacted directly with parasubstituted phenols HOC₆H₄R and K₂CO₃ in acetone to give the new compounds [N₃P₃(Oc₆H₄R)₂(O₂C₁₂H₈)₂] (R = Br, COC₆H₅, or OCH₃), without signs of replacement of the bis(aryloxy) substituents. In an analogous manner, poly(dichlorophosphazene) [NPCl₂]_n reacted with HOC₆H₄C₆H₄OH and K₂CO₃ in THF without significant cross-linking to give, depending on the mole ratio, the soluble polymer [NP(O₂C₁₂H₈)]_n, (M_w = 450 000, T_g = 160 °C) or the partially substituted polymers {[NP(O₂C₁₂H₈)]_{0.35}[NPCl₂]_{0.65}}_n. The latter were subsequently reacted with the para-substituted phenols HOC₆H₄R and K₂CO₃ in THF to give the random copolymers {[NP(O₂C₁₂H₈)]_{0.35}[NP(Oc₆H₄R)₂]_{0.65}}_n [R = Br, CN, COCH₃, or COC₆H₅). The new polymers are soluble (except the CN derivative, which was sparingly soluble) white solids, with only a few ppm of unreacted chlorine, and M_w of the order of 1 000 000 with polydispersities varying from 3 to 10. The T_g values varied with R ranging from 73 °C (R = CN) to 54 °C (R = COMe).

Introduction

Poly[alkoxy- or -(aryloxy)phosphazenes] of the general formula $[NP(OR)_{2-x}(OR')_x]_n$ (R = R', homopolymers; R \neq R', copolymers) are a very important class of inorganic macromolecules.1 They are usually prepared by reacting [NPCl₂]_n and the NaOR, NaOR' salts in an appropriate organic solvent. As a result, many different organic groups can be incorporated to the main chain and in variable proportions leading to multifunctionalized polymers. On the other hand, many of their mechanical and other physical properties, especially solubility and hydrophobicity, markedly depend on their chemical composition. Therefore, the polyphosphazenes can be tailored aiming for different predetermined properties.² Furthermore, controlled cross-linking allow the preparation of functionalized elastomers that are useful materials for many different applications.³

So far, the only limitation appeared to be the use of difunctional reagents, because of the high probability that their reactions with $[NPCl_2]_n$ lead to cross-linking in the first steps of the chlorine substitution process giving unstable insoluble materials.³

Recently, we reported⁴ a very convenient method for the preparation of trimeric and polymeric (aryloxy)-phosphazenes directly from $[N_3P_3Cl_6]$ or $[NPCl_2]_n$, phenols, and K_2CO_3 using acetone (for the trimers) or tethahydrofuran (for the polymers) as solvent. While extending the application of the method to the diol 2,2′-dihydroxybiphenyl (HOC₆H₄C₆H₄OH), we noted that the reactions with $[N_3P_3Cl_6]$ were very clean, leading to the mono-spiro-, bis-spiro and tris-spiro-substituted derivatives without signs of intramolecular or intermolecular bridged species. This prompted us to try the reaction of poly(dichlorophosphazene) $[NPCl_2]_n$ with this diol and K_2CO_3 in THF which gave soluble polymers of formula $\{[NP(O_2C_{12}H_8)]_{1-x}[NPCl_2]_x\}_n$, including the totally sub-

stituted derivative $[\text{NP}(O_2C_{12}H_8)]_{\textit{In}},$ which was also soluble.

Experimental Section

Materials. K_2CO_3 was dried at 140 °C prior to use. The acetone used as solvent was predistilled from $KMnO_4$ and further distilled from anhydrous $CaSO_4$. The THF was treated with KOH and distilled twice from Na in the presence of benzophenone. Petroleum ether refers to that fraction with boiling point in the range 60-65 °C. The diphenol $HOC_6H_4C_6H_4OH$ and the phenols HOC_6H_4R (R=Br, CN, $COCH_3$, COC_6H_5 , OCH_3) were used as purchased (Aldrich). The hexachlorocyclotriphosphazene $[N_3P_3Cl_6]$ (Strem Chemicals) was purified from hot petroleum ether and dried in vacuo. Tetrabutylammonium bromide (TBAB) (Aldrich) was dried under vacuum at 50 °C. The starting polymer $[NPCl_2]_n$ was prepared as described by Magill et al. All the reactions were carried out under dry nitrogen.

Measurements. The IR spectra were recorded with a Perkin-Elmer FT 1720-X spectrometer. NMR spectra were recorded on Bruker AC-200 and AC-300 instruments, using CDCl₃ as solvent unless otherwise stated. ¹H and ¹³C{¹H} NMR are given in δ relative to TMS. ³¹P{¹H} NMR are given in δ relative to external 85% aqueous H₃PO₄. Coupling constants are in Hz. C, H, N analyses were performed with a Perkin Elmer 240 microanalyzer. P, Cl, and K analyses were performed by Galbraith Laboratories. Unless stated otherwise, the analytical data given for the cyclic phosphazenes correspond to the isolated reaction products without purification. GPC were measured with a Perkin-Elmer instrument with a Model LC 250 pump, a Model LC 290 UV, and a Model LC 30 refractive index detector. The samples were eluted with a 0.1% by weight solution of tetra-*n*-butylammonium bromide in THF through Perkin-Elmer PLGel (Guard 10⁵, 10⁴, and 10³ Å) at 30 °C. Approximate molecular weight calibrations were obtained using narrow molecular weight distribution polystyrene standards. T_g values were measured with a Mettler DSC 300 differential scanning calorimeter equipped with a TA 1100 computer. Thermal gravimetric analysis were performed on a Mettler TA 4000 instrument. The polymer samples were heated at a rate of 10 °C/min from ambient temperature to 800 °C under constant flow of nitrogen.

Synthesis of the Cyclic and Polymeric Phosphazenes. [N₃P₃Cl₄(O₂C₁₂H₈)] (1). A mixture of [N₃P₃Cl₆] (0.5 g, 1.44

[®] Abstract published in *Advance ACS Abstracts*, June 15, 1996.

mmol), 2,2'-HOC₆H₄C₆H₄OH (0.268 g, 1.44 mmol), and K₂CO₃ (1 g, 7.24 mmol) in acetone (20 mL) was stirred at room temperature for 15 min. The volatiles were evaporated in vacuo, and the residue was extracted with CH_2Cl_2 (3 × 15 mL). Evaporation of the solvent in vacuo gave 1 as a white solid, containing ca. 3% of 2, yield 0.6 g, 91%. Recrystallization from

CH₂Cl₂/petroleum ether gave the pure product. ^{1}H NMR δ : 7.2–7.6 (m, 8 H, C₁₂H₈). $^{31}P\{^{1}H\}$ NMR: (CDCl₃) 13.3 (dd, 1P, P(O₂C₁₂H₈)), 25.2 (d, 2P, PCl₂) (AB₂ system, J_{AB} = 71); (acetone/ D_2O) 14.0 (dd, 1P, $P(O_2C_{12}H_8)$), 25.8 (d, 2P, PCl₂) (AB₂ system, $J_{AB} = 72$). ¹³C{¹H} NMR 122 (d, $J_{PC} = 4$), 128 s, 129 s, 130.6 s, 130.9 s, 148 m (12 C; C₁₂H₈). Anal. Calcd for C₁₂H₈O₂Cl₄N₃P₃: C, 31.3; H, 1.7; N, 9.1. Found: C, 31.7;

H, 1.8; N, 8.9.

 $[N_3P_3Cl_2(O_2C_{12}H_8)_2]$ (2). To a solution of 2,2'-HOC₆H₄C₆H₄-OH (0.53 g, 2.88 mmol) in acetone (15 mL), which was cooled to 0 °C, were added solid [N₃P₃Cl₆] (0.5 g, 1.44 mmol) and K₂CO₃ (1 g, 7.23 mmol) and the mixture was stirred at room temperature for 2 h. The volatiles were evaporated in vacuo and the residue extracted with CH_2Cl_2 (5 × 25 mL). Evaporation of the solvent in vacuo gave 2 as a white solid, containing 1−3% of **3**, yield 0.69 g, 83%.

¹H NMR δ : 7.3–7.5 (m, 16H, C₁₂H₈). ³¹P{¹H} NMR: (CDCl₃) 19.9 [d, 2P, P(O₂C₁₂H₈)], 29.6 (dd, 1P, PCl₂) (AB₂ system, $J_{AB} = 80$; (acetone/D₂O) 20.7 [d, 2P, P(O₂C₁₂H₈)], 29.8 (dd, 1P, PCl₂) (AB₂ system, $J_{AB} = 81$). ¹³C{¹H} NMR 122 s, 127 s, 129 s, 130.5 s, 130.7 s, 148 m (24 C; C₁₂H₈). Anal. Calcd for C₂₄H₁₆O₄Cl₂N₃P₃: C, 50.2; H, 2.8; N, 7.3. Found: C, 49.7; H, 2.7; N, 7.0.

 $[N_3P_3(O_2C_{12}H_8)_3]$ (3). A mixture of $[N_3P_3Cl_6]$ (0.5 g, 1.44 mmol), 2,2'-HOC₆H₄C₆H₄OH (0.9 g, 4.83 mmol), and K₂CO₃ (1.5 g, 10.9 mmol) in acetone (70 mL) was refluxed for 5 h. The volatiles were evaporated in vacuo, and the residue was washed with water (50 mL), aqueous NaOH (50 mL, 0.5 M), water (2 \times 50 mL), ethanol (25 mL), and ether (25 mL). The product was dried in vacuo, yield 0.85 g, 86%. The products, not further purified, had a moderate analytical purity with lower than expected C,H,N values.

¹H NMR δ : 7.2–7.6 (m, 24 H, C₁₂H₈). ³¹P{¹H} NMR: (CDCl₃) 26; (acetone/D₂O) 27 (s, 3 P, N₃P₃ ring). Anal. Calcd for C₃₆H₂₄O₆N₃P₃: C, 62.9; H, 3.5; N, 6.1. Found: C, 61.1; H, 3.4; N, 5.8.

 $[N_3P_3(OC_6H_4-Br)_2(O_2C_{12}H_8)_2]$ (4a). A mixture of $[N_3P_3Cl_2-P_3]$ (O₂C₁₂H₈)₂] (0.8 g, 1.39 mmol), HOC₆H₄Br (0.481 g, 2.78 mmol), and K₂CO₃ (2 g, 14.5) in acetone (40 mL) was refluxed for 3 h. The volatiles were evaporated in vacuo and the residue extracted with CH_2Cl_2 (4 \times 15 mL). Evaporation of the solvent in vacuo gave pure 4a as a white solid, yield 1.1 g, 95%.

¹H NMR δ : 7.0–7.5 (m 24 H, arom rings). ³¹P $\{$ ¹H $\}$ NMR: $(CDCl_3)$ 10.3 $(dd, 1P, P(OC_6H_4Br)_2)$ 25.7 $(d, 2P, P(O_2C_{12}H_8))$ (AB₂ system, $J_{AB} = 93$); (acetone/D₂O) 11.6 (dd, 1P, P(OC₆H₄-Br)₂), 26.7 (d, 2P, P(O₂C₁₂H₈)) (AB₂ system, $J_{AB} = 93$). ¹³C{¹H} NMR: 119, 122, 124 (d, $J_{PC} = 5$ Hz), 127, 129, 130.3, 130.4, 133 s, 149 br, 150 br (36 C; arom rings). Anal. Calcd for C₃₆H₂₄O₆Br₂N₃P₃: C, 51.0; H, 2.9; N, 5.0. Found: C, 50.8; H, 2.9; N, 4.5.

 $[N_3P_3(OC_6H_4-COC_6H_5)_2(O_2C_{12}H_8)_2]$ (4b). A mixture of $[N_3P_3Cl_2(O_2C_{12}H_8)_2]$ (0.5 g, 0.83 mmol), $HOC_6H_4COC_6H_5$ (0.34) g, 1.74 mmol), and K_2CO_3 (0.6 g, 4.35 mmol) in acetone (30 mL) was refluxed for 1 h. The volatiles were evaporated in vacuo, and the residue was extracted with CH_2Cl_2 (4 × 40 mL). The solution was evaporated in vacuo to give pure 4b as a white solid, yield 0.65 g, 88%.

¹H NMR δ : 7.0–8.0 (m, 34 H, arom rings). ³¹P{¹H} NMR: $(CDCl_3)$ 9.5 (dd, 1P, $P(OC_6H_4COC_6H_5)_2$), 25.6 (d, 2P, $P(O_2C_{12}H_8)$) (AB₂ system, $J_{AB} = 95$); (acetone/D₂O) 11.2 (dd, 1P, P(OC₆H₄- $COC_6H_5)_2$), 26.7 (d, 2P, $P(O_2C_{12}H_8)$) (AB₂ system, $J_{AB} = 95$ Hz). ¹³C{¹H} NMR: 122.3, 127, 129, 130.3, 130.4, 130.6, 132.6, 133, 135, 138, 149, 154 (48 C, arom rings), 196 (2C, CO). Anal. Calcd for C₅₀H₃₄O₈N₃P₃: C, 66.9; H, 3.8; N, 4.7. Found: C, 65.8; H, 4.0; N, 4.5.

Synthesis of $[N_3P_3(OC_6H_4OCH_3)_2(O_2C_{12}H_8)_2]$ (4c). A mixture of $[N_3P_3Cl_2(O_2C_{12}H_8)_2]$ (1 g, 1.74 mmol), HOC_6H_4OMe (0.431 g, 3.47 mmol), TBAB (0.04 g, 0.12 mmol), and $K_2\mathrm{CO}_3$ (2 g, 14.5 mmol) in acetone (35 mL) was refluxed for 6.5 h. The volatiles were evaporated in vacuo, and the residue was

dissolved in toluene (100 mL). The solution was washed with water (3 \times 200 mL). The solvent was evaporated, the residue was dissolved in CH2Cl2, and the solution was dried over Na_2SO_4 . After filtering, the solvent was evaporated in vacuo to give pure 4c as a white solid, yield 1.12 g, 86.3%.

¹H NMR δ : 3.7 (s, 6H, OCH₃), 6.8–7.4 (m, 24 H, arom rings). ³¹P{¹H} NMR: (CDCl₃) 11.1 (dd, 1P, P(OC₆H₄OMe)₂), 26.2 (d, 2P, $P(O_2C_{12}H_8)$) (AB₂ system, $J_{AB} = 91$); (acetone/D₂O) 12.4 (dd, 1P, P(OC₆H₄OMe)₂), 27 (d, 2P, P(O₂C₁₂H₈)) (AB₂ system, $J_{AB} = 92$). ¹³C{¹H} NMR: 56.3 (s, 2C, OCH₃), 115, 122.5, 122.8 (d, $J_{PC} = 4$), 127, 129, 130.2, 130.3, 145 br, 149 br, 157 (36 C, arom rings). Anal. Calcd for C₃₈H₃₀O₈N₃P₃: C, 60.9; H, 4.0; N, 5.6. Found: C, 60.7; H, 4.3; N, 5.2.

 $[\mathbf{NP}(\mathbf{O_2C_{12}H_8}) \cdot \mathbf{x}(\mathbf{OC_4H_8})]_n$ (5). To a solution of $[\mathbf{NPCl_2}]_n$ (1.85 g, 16 mmol) in THF (300 mL) were added 2,2'-HOC₆H₄C₆H₄OH (4.5 g, 24 mmol) and K₂CO₃ (8.8 g, 63.8 mmol), and the mixture was refluxed for 35 h with vigorous mechanical stirring. The mixture was poured into water (1.5 L) to give a white precipitate that was washed twice with water (1.5 L) and dissolved in THF (200 mL). The solution was filtered and concentrated to a viscous liquid that was poured into water (1.5 L). The product was similarly reprecipitated once from THF/2-propanol and once from THF/petroleum ether. The resulting solid was predried first in vacuo at room temperature and then at 70 °C for 7 days. The product was $[NP(O_2C_{12}H_8)\cdot 0.4(OC_4H_8)]_n$ (11.2% poly-THF), yield 2.3 g, 56%.

¹H NMR δ : 6.6–7.4 (m, 8 H, arom rings), 3.4m, 1.6m (3.2) H, poly-THF). ${}^{31}P{}^{1}H}$ NMR (CDCl₃): -5.82 (-6.06 in THF). $^{13}C\{^{1}H\}$ NMR: 124, 126, 129, 130, 149 ($C_{12}H_8O_2$), 27.2, 71.3 (poly-THF). Anal. Calcd for C_{13.6}H_{11.2}O_{2.4}NP: C, 63.3; H, 4.3; N, 5.4; P, 12.0. Found: C, 63.4; H, 4.1; N, 5.4; P, 12.3. Chlorine content 0.16%.

 $M_{\rm w}({\rm GPC})$ 385 000 ($M_{\rm w}/M_{\rm n}=5.5$). $T_{\rm g}({\rm DSC})=164~{\rm ^{\circ}C}$.

TGA: -11.5% (360 °C), -46% (480 °C). Residue at 800 °C:

A similar preparation but with a reaction time of 23 h gave the product $[N\hat{P}(O_2C_{12}H_8)\cdot 0.5(OC_4H_8)]_n$ (13.8% poly-THF) in 60% yield. Anal. Calcd for C₁₄H₁₂O_{2.5}NP: C, 63.4; H, 4.5; N, 5.3; P, 11.7. Found: C, 64.4; H, 4.3; N, 5.4; P, 11.7. Chlorine content: 0.085%. K content: 0.0082%.

 $M_{\rm w}({\rm GPC})$ 620.000 ($M_{\rm w}/M_{\rm n}=8.0$). $T_{\rm g}({\rm DSC})=160~{\rm °C}$.

TGA: -14.3% (350 °C); -46.5% (480 °C). Residue at 800

Using an excess of 6 mmol of 2,2'-HOC₆H₄C₆H₄OH per mmol of $[NPCl_2]_n$ and 35 h of reflux gave the product $[NP(O_2C_{12}H_8)]_n$ free of poly-THF in 59% yield. Anal. Calcd for $C_{12}H_8O_2NP$: C, 62.9; H, 3.5; N, 6.1; Found: C, 62.6; H, 3.5; N, 6.0.

 $M_{\rm w}({\rm GPC})$ 490 000 $(M_{\rm w}/M_{\rm n}=9.9)$. $T_{\rm g}({\rm DSC})=160~{\rm ^{\circ}C}$. TGA: −63% (470 °C). Residue at 800 °C: 28%.

 $\{[NP(O_2C_{12}H_8)]_{0.35}[NP(OC_6H_4Br)_2]_{0.65} \cdot x(OC_4H_8)\}_n$ (6a). To a solution of $[NPCl_2]_n$ (1.43 g, 12.3 mmol) in THF (250 mL) were added 2,2'-HOC₆H₄C₆H₄OH (0.76 g, 4.1 mmol) and K₂CO₃ (6.82 g, 49.2 mmol), and the mixture was refluxed for 1.5 h with vigorous mechanical stirring. Then, the phenol HOC₆H₄-Br (14.2 g, 82.2 mmol) was added, and refluxing was continued for 72 h. After that, the polymer 6a was isolated and purified following the same procedure as for 5. Yield: 2.5 g, 60%. The product had x = 0.08 (1.7% poly-THF).

¹H NMR δ : 6.4–7.5 (m, arom rings). ³¹P{¹H} NMR $(CDCl_3)$: $-4.3 [m, P(O_2C_{12}H_8)], -20.3 [m, P(OC_6H_4Br)_2], (-4.0)$ and -20.0 in THF). ¹³C{¹H} NMR: 118, 123, 133, 151 (OC₆H₄-Br), 123(sh), 126, 129.5, 130, 149 ($C_{12}H_8O_2$). Anal. Calcd for $C_{12.3}H_{8.6}O_{2.08}NPBr_{1.3}$: C, 43.6; H, 2.5; N, 4.1; P, 9.2. Found: C, 43.9; H, 2.5; N, 4.2; P, 9.4.

 $M_{\rm w}({\rm GPC})$ 1 400 000 $(M_{\rm w}/M_{\rm n}=8.1)$. $T_{\rm g}({\rm DSC})=55~{\rm ^{\circ}C}$ TGA: -1.6% (320 °C), -55% (480 °C). Residue at 800 °C:

The same results were obtained using a ratio of 2.7 mmol of bromophenol and 200 h reflux in the second substitution

In another experiment the [NPCl₂]_n was reacted first for 16 h with 0.53 mmol of 2,2'-HOC₆H₄C₆H₄OH and then for 67 h with 2.4 mmol of bromophenol per mmol of still unreacted (NPCl₂) to give the polymer $\{[NP(O_2C_{12}H_8)]_{0.55}[NP(OC_6H_4-C_{12}H_8)]_{0.55}\}$ Br)₂]_{0.45}·0.1(OC₄H₈)}_n (2.33% poly-THF), isolated in 58% yield. Anal. Calcd for C_{12.4}H_{8.8}O_{2.1}NPBr_{0.9}: C, 48.3; H, 2.8; N, 4.5. Found: C, 47.6; H, 2.8; N, 4.4; $M_{\rm w}=1$ 290 000 ($M_{\rm w}/M_{\rm n}=5.2$). $T_{\rm g}({\rm DSC})=72~{\rm ^{\circ}C}.$

TGA: -2.8% (340 °C), -51.9%(480 °C). Residue at 800 °C: 44%.

 $\{ [NP(O_2C_{12}H_8)]_{0.35} [NP(OC_6H_4CN)_2]_{0.65} \}_n$ (6b). To a solution of $[NPCl_2]$ (1.43 g, 12.3 mmol) in THF (250 mL) were added 2,2'-HOC_6H_4C_6H_4OH (0.76 g, 4.12 mmol) and K_2CO_3 (6.8 g, 49.2 mmol), and the mixture was refluxed for 1.5 h with vigorous mechanical stirring. Then, the phenol HOC_6H_4CN (2.94 g, 24.7 mmol) was added, and refluxing was continued for 65 h. The mixture was poured into water (1.5 L) to give a white precipitate that was dissolved in DMF. The solution was filtered and concentrated to a viscous liquid that was poured into water (1.5 L). The precipitate was washed with 2-propanol and hexane. The resulting solid was predried first in vacuo at room temperature and then at 70 °C for 7 days, yield 2.3 g, 71%. When freshly precipitated from DMF/H₂O the polymer is soluble in THF.

 $^{31}P\{^{1}H\}$ NMR (DMF): -3.3 [m, $P(O_{2}C_{12}H_{8})], <math display="inline">-20.8$ [m, $P(OC_{6}H_{4}CN)_{2}].$ Anal. Calcd for $C_{13.3}H_{8}O_{2}N_{2.3}P$: C, 60.7; H, 3.0; N, 12.2; P, 11.8. Found: C, 60.0; H, 2.9; N, 11.9; P, 12.1. Chlorine content 0.04%.

 $M_{\rm w} = 1~680~000~(M_{\rm w}/M_{\rm n} = 2.1)$. $T_{\rm g}({\rm DSC}) = 75~{\rm ^{\circ}C}$.

TGA: continuous loss of weight more pronounced at ca. 320 and 440 $^{\circ}$ C. Residue at 800 $^{\circ}$ C: 45%.

 $\{ [NP(O_2C_{12}H_8)]_{0.35} [NP(OC_6H_4COCH_3)_2]_{0.65} \}_n$ (6c). To a solution of $[NPCl_2]_n$ (1.26g, 10.9 mmol) in THF (240 mL) were added 2,2'-HOC_6H_4C_6H_4OH (0.67 g, 3.62 mmol) and K_2CO_3 (6.01 g, 43.5 mmol), and the mixture was refluxed for 1 h with vigorous mechanical stirring. Then, the phenol HOC_6H_4COCH_3 (2.97 g, 21.8 mmol) was added, and refluxing was continued for 62 h. After that, the polymer $\bf 6c$ was isolated and purified following the same procedure as for $\bf 5$, yield 2.3 g, 74%.

¹H NMR δ: 2.2 (CH₃), 6.4–7.5 (m, arom rings). ³¹P{¹H} NMR (CDCl₃): -4.2 [m, $P(O_2C_{12}H_8)$], -20.8 [m, $P(OC_6H_4-COCH_3)$ 2] (-3.9 and -20.2 in THF). ¹³C{¹H} NMR: 27 (2C, CH₃), 197 (2C, CO), 121, 130, 134, 155 (C₆H₄), 122, 126, 129, 149 (C₁₂H₈O₂). Anal. Calcd for C_{14.6}H_{11.9}O_{3.3}NP: C, 61.5; H, 4.2; N, 4.9; P, 10.9. Found: C, 61.0; H, 4.1; N, 4.9; P, 11.0. Chlorine content 0.1%.

 $M_{\rm w}({\rm GPC})$ 1 650 000 $(M_{\rm w}/M_{\rm n}=3.7)$. $T_{\rm g}({\rm DSC})=54~{\rm ^{\circ}C}$.

TGA: continuous loss of weight more pronounced at 310, 520 °C. Residue at 800 °C: 65%.

 $\begin{aligned} & \{ [NP(O_2C_{12}H_8)]_{0.35}[NP(OC_6H_4COC_6H_5)_2]_{0.65} \}_n \text{ (6d).} & \text{ To a solution of } [NPCl_2]_n \text{ (2.1 g, 18.6 mmol) in THF (300 mL) were added } 2,2'-HOC_6H_4C_6H_4OH \text{ (1.1 g, 6.2 mmol) and } K_2CO_3 \text{ (10.3 g, 74.2 mmol), and the mixture was refluxed for 1 h with vigorous mechanical stirring. Then, the phenol <math>HOC_6H_4-COC_6H_5 \text{ (7.2 g, 36.32 mmol)} \text{ was added, and refluxing was continued for 62 h. After that, the polymer $\mathbf{6d}$ was isolated and purified following the same procedure as for $\mathbf{5}$, yield 5.1 g. 75%. } \end{aligned}$

 1H NMR $\delta\colon$ 6.4–7.5 (m, arom rings). $^{31}P\{^1H\}$ NMR (CDCl₃): -4.1 [m, P(O $_2$ C $_{12}$ H $_8$)], -21.5 [m, P(OC $_6$ H $_4$ COC $_6$ H $_5$) $_2$] (–4.2 and –21.1 in THF). $^{13}C\{^1H\}$ NMR: 195 (2C, CO), 121, 129, 130, 132, 133, 134, 138, 155 (C $_6$ H $_5$ and C $_6$ H $_4$), 122, 126, 129, 130, 149 (C $_{12}$ H $_8$ O $_2$). Anal. Calcd for C $_{21.1}$ H $_{14.5}$ O $_{3.5}$ NP: C, 69.3; H, 4.0; N, 3.8; P, 8.4. Found: C, 69.6; H, 4.1; N, 3.7; P, 8.3. Chlorine content 0.06%.

 $M_{\rm w}({\rm GPC})$ 1 250 000 $(M_{\rm w}/M_{\rm n}=3.1)$. $T_{\rm g}({\rm DSC})=68$ °C.

TGA: continuous loss of weight more pronounced at 450 $^{\circ}\text{C}.$ Residue at 800 $^{\circ}\text{C}:$ 50%.

Results and Discussion

The hexachlorocyclotriphosphazene $[N_3P_3Cl_6]$ reacted with the diol $2,2'\text{-HOC}_6H_4C_6H_4OH$ in the presence of K_2CO_3 in acetone to give, depending on the conditions, the known⁵ substituted products $[N_3P_3Cl_4(O_2C_{12}H_8)]$ (1), $[N_3P_3Cl_2(O_2C_{12}H_8)_2]$ (2), and $[N_3P_3(O_2C_{12}H_8)_3]$ (3) (Chart 1). At room temperature, with a 1:1 ratio, the reaction gave 1 with ca. 3% of 2 and, with a 1:2 ratio, compound 2 with $1\!-\!3\%$ of the tris-spiro derivative 3. The latter, which is only sparingly soluble, was formed with a 1:3

ratio at reflux. Consistent with earlier observations, 4 the formation of ${\bf 3}$ from the diol is faster in acetone than in THF

4 c

The dichloro derivative **2** reacted very fast with parasubstituted phenols HOC_6H_4R and K_2CO_3 in refluxing acetone to give $[N_3P_3(OC_6H_4R)_2(O_2C_{12}H_8)_2]$ R = Br (**4a**) and COC_6H_5 (**4b**) that were isolated pure in high yield. However, with the less acidic phenol HOC_6H_4OMe , the reaction was slow and was better carried out in the presence of a small amount of TBAB to give pure $[N_3P_3(OC_6H_4OMe)_2(O_2C_{12}H_8)_2]$ (**4c**).

In no case was the replacement of the $O_2C_{12}H_8$ groups already present in the cyclic compounds by the entering OC_6H_4R groups detected.

All the products were characterized by C,H,N analyses, ^{31}P NMR, ^{1}H and ^{13}C NMR (Experimental Section), and mass spectral data. The mass spectra showed the parent peak and the peaks of the fragments left after the sequential loss of OR groups. However, in many cases the fragmentations of the bonds of the \emph{O} -aryl ring and the C_6H_4-R bonds or bonds inside the R substituent were clearly observed.

It is known that bifunctional nucleophiles can react with $[N_3P_3Cl_6]$ in various ways⁶ and that 2,2'-dihydroxybiphenyl HOC₆H₄C₆H₄OH can behave as a monofunctional phenol or give transannular substituted cyclic phosphazenes.^{5c} However, the observation that its reaction with $[N_3P_3Cl_6]$ and K_2CO_3 gave no products having intermolecular (bino) or intramolecular (ansa) bridging dioxybiphenyl prompted us to investigate the reactions of this diphenol with the polymer $[NPCl_2]_n$ (see Scheme 1). Thus, we found that the poly(dichlorophosphazene), prepared by the thermal polymerization of $[N_3P_3Cl_6]$ in solution,⁷ reacted in refluxing THF with 2,2'-dihydroxybiphenyl HOC₆H₄C₆H₄OH in the presence of K_2CO_3 to give after 35 h the new polymer $[NP-(O_2C_{12}H_8)]_n$ (5) in ca. 60% yield. The isolated products

Scheme 1

were very soluble in THF and CH₂Cl₂ and had less than 0.1% of chlorine (when the reaction time was reduced to 12 h the polymer contained 0.6% of unreacted Cl) and no traces of K-salts (less than 0.009% K). Therefore, no significant cross-linking took place during the substitution reaction. The average $M_{\rm w}$, as measured by GPC, was of the order of 500 000 with a polydispersity of 5–10. Rather unexpectedly, however, the chromatograms indicated that the products were reproducibly bimodal (Figure 1).

All the analytical and spectroscopic data (Experimental Section) were in accord with the formulation of 5 (Scheme 1) and clearly evidenced the complete (or at least nearly so) spiro ring formation in the high polymers. Thus, the ¹³C NMR spectra showed only five peaks (one of them, at 130 ppm, corresponding to two carbons) for the $O_2C_{12}H_8$ group (as in the cyclic models), suggesting that it is symmetrycally attached to the P atom. Furthermore, the IR spectra of the solids did not show any indication of free –OH groups, and, moreover, the ³¹P NMR spectra of both the homopolymers $[NP(O_2C_{12}H_8)]_n$ and the nonisolated precursors $\{[NPCl_2]_x[NP(O_2C_{12}H_8)]_{1-x}\}_n$ clearly show that there were no signals attributable to groups $[NP(OC_{12}H_8OH)_2]$ with monodentated biphenols (that, according to the spectra copolymers $\{[NP(OC_6H_4R)_2]_{X}$ of the $[NP(O_2C_{12}H_8)]_{1-x}$ _n (6 in Scheme 1, as described below) would have ${}^{31}P$ chemical shifts of the order of -20 ppm).

However, in all the preparations performed (except in one, which was carried out using a large excess of diol) the final products contained variable ammounts of poly(tetrahydrofuran) (poly-THF) and had the composition $[NP(O_2C_{12}H_8)\cdot x(OC_4H_8)]_p$, with x ranging from 0.1 to 0.5. This was supported by the analytical data and by the ¹H NMR spectra (two equally intense signals at 1.6 and 3.4 ppm, with the exact integration required for each x value), and the ¹³C NMR spectra (two signals at 27.1 and 71.3 ppm) (for the cyclic THF the signals are at 1.8 and 3.7 and at 26.7 and 68.6 ppm, respectively). The poly-THF contents were unaltered after the polymers were dried at 70 °C for 30 days, and repeated reprecipitations from CH₂Cl₂/petroleum ether caused

only slight reductions. Significant elimination of poly-THF (e.g., from x = 0.4-0.2) occurred on heating the polymers at 190 °C for 4 h. This treatment provoked the depolymerization and volatilization of the poly-THF but also reduced the average molecular weight of the product to ca. 300 000 ($M_{\rm w}/M_{\rm n} = 6.0$) and the $T_{\rm g}$ to 158 °C, indicating that the heating also caused the fragmentation of the phosphazene chains. Thus, a 24 h drying at this temperature almost eliminated the poly-THF content, giving an average $M_{\rm w}$ of 290 000 ($M_{\rm w}/M_{\rm n}$ = 4.7) (T_g of 141 °C) (in both cases the bimodality was the same than that of the starting material). Consistently, the TGA curves of the products showed a weight loss at 360 °C that matched their poly-THF contents.

The DSC curves of 5 exhibited a very clear glass transition with $T_{\rm g}$ around 161 °C and gave further confirmation of the poly-THF content because they showed an endothermic peak in the heating curves at 27 °C and an exothermic one in the cooling processes at -20 °C that were absent in the samples without poly-THF. This transition fits well with the expected value⁸ for the melting point (and freezing point) of poly-THF of average molecular weights intermediate between 2000 and 3000.

After a number of experiments, it was concluded that the poly-THF was formed when the $[NPCl_2]_n$, obtained heating the cyclic [N₃P₃Cl₆] by the method of Magill,⁷ was dissolved in THF for its reaction with 2,2'-HOC₆H₄C₆H₄OH. This unexpected effect is due to small amounts of sulfamic acid that is used as a promoter of the polymerization of [N₃P₃Cl₆] and that may be occasionally present in the polydichlorophosphazene used in the synthesis of **5**. We checked that, as expected, ⁹ the sulfamic acid did, in fact, polymerize the THF.

However, the difficulty in eliminating the poly-THF from the isolated polyphosphazenes by repeated precipitations in water, alcohol, and hexane is more puzzling because it is appreciably soluble in those solvents. In fact, no poly-THF contents were reported in the purified polymers prepared by Magill et al.⁷ In the same way, the phosphazene polymers prepared earlier by us using the same polymerization method⁴ did not



Figure 1. GPC chromatogramms of the polymers 5 (a) and 6a (b).

contain significant amounts of poly-THF (although we detected very tiny amounts in some of the samples). Thus, it could be argued that, in the case of the polymers **5**, the poly-THF chains could be trapped with the phosphazene chains by entanglements suggesting a strong association favored by the presence of the $P(O_2C_{12}H_8)$ rings. However, although it is known that the cyclic models with some dioxyarenyl groups can form solid structures with channels capable of retaining small molecules, 10 the 2,2'-dioxybiphenyl derivatives do not have this propensity.¹¹

The reaction of $[NPCl_2]_n$ with 0.33 mmol of HOC₆H₄C₆H₄OH in the presence of K₂CO₃ gave in 1.5 h the partially substituted polymers with average composition $\{[NP(O_2C_{12}H_8)]_{0.35}[NPCl_2]_{0.65}\}_n$. The latter were subsequently reacted with the acidic phenols HOC₆H₄R and K₂CO₃ in refluxing THF to give the phosphazene random copolymers $\{[NP(O_2C_{12}H_8)]_{0.35}$ $[NP(OC_6H_4R)_2]_{0.65}$ _n (6) $[R = Br, CN, COCH_3, or COC_6H_5]$ that were isolated in 60-70% yields and with a high analytical purity. Monitoring the reaction by ³¹P NMR clearly indicated that the substitution mechanisms were predominantly nongeminal and that, as in the cyclic models, no appreciable substitution of the O₂C₁₂H₈ groups by the entering OC₆H₄R was observed. The reaction time was short (60 h) except for R = Br, which was on the order of 200 h unless a large excess of *p*-bromophenol is used in the second step. The relative proportions of the units [NP(O₂C₁₂H₈)] and [NP-(OC₆H₄R)₂] could be easily controlled by varying the amounts of diol and phenol used. Thus, with 0.53 mmol of diol and an excess of HOC₆H₅Br, the polymer $\{[NP(O_{2}C_{12}H_{8})]_{0.55}[NP(OC_{6}H_{4}Br)_{2}]_{0.45}\cdot 0.1(OC_{4}H_{8})\}_{n}$ was obtained in 58% yield.

The new polymers (having only a few ppm of chlorine) were white solids that, with the exception of the derivative with R = CN, were very soluble in THF and CH_2Cl_2 (the R = CN polymer could be dissolved in DMF). The actual ratios $[NP(O_2C_{12}H_8)]/[NP(OC_6H_4R)_2]$ as measured by integrating the corresponding signals in the ³¹P NMR were in good agreement within experimental error with the expected 0.35/0.65. The $M_{\rm w}$ (GPC) were of the order of 1 000 000 with polydispersities varying from 2 to 8 depending on R.

Similar to 5, some of the products contained ca. 0.1 OC_4H_8 units of poly-THF per $[NP(O_2C_{12}H_8)]_{0.35}[NP-$

 $(OC_6H_4R)_2]_{0.65}$ unit (representing 1–3% in weight). However, the derivatives with CN, COCH₃, and COC₆H₅ were obtained totally pure, free of poly-THT. (In the case of the rather insoluble CN derivative, the poly-THF, which may be occasionally present in some samples, is better detected by the peak at 27 °C in the DSC curves).

The other unexpected feature of the polymers was their bimodal character with reproducible chromatograms (Figure 1), which was almost absent in the case of the derivative with $R = COC_6H_5$, but very noticeable for $\mathbf{5}$ and for the mixed derivatives with R = COMe and Br. A plausible explanation could be the fragmentation of the polymeric chains during the reaction of the $[NPCl_2]_n$ with the diphenol, as suggested by the average molecular weight of the homopolymer 5, which is markedly lower than those of the copolymers.

Apart from the poly-THF loss at 360 °C, the TGA curves showed other losses (see Experimental Section), especially one at near 460 °C that ranged from 35 to 50% depending on R. Similar to other polyphosphazenes, this may be due to the formation of volatile cyclic oligomers by depolimerization.¹² The solid residue at 800 °C varied from 35 to 65% depending on R.

The DSC curves displayed only the heat capacity jump corresponding to the glass transition that depended on R in the expected manner.^{2,3} Thus, the highest value (161°C) corresponded to the homopolymer $[NP(O_2C_{12}H_8)]_{p_s}$ which was not affected by the poly-THF content. For the random copolymers with OC₆H₄R substituents in the ratio 0.35/0.65 the T_g decreased in the order $CN > COC_6H_5 > Br \approx COCH_3$. Consistently, the copolymer with OC_6H_5Br in a ca 0.5/0.5 ratio had a higher T_g (72 °C) than **6a**.

Acknowledgment. We thank spanish Dirección General de Investigación Científica y Técnica (DGICYT), Project PB94-1346, and the Fomento de la Investigación Científica y Técnica (FICYT), Project PB-MAT95-02 for support.

References and Notes

- (1) Allcock, H. R. Chem. Eng. News 1985, Mar 18, 22. Allcock, H. R. *Adv. Mater.* **1994**, *6*, 106. (a) Mark, J. E.; Allcock, H. R.; West, R. *Inorganic Polymers*;
- Prentice Hall: Englewood Cliffs, NJ, 1992; Chapter 3 (b) For

- a number of references see also: Honeyman, C. H.; Manners, I.; Morrissey, C. T.; Allcock, H. R. J. Am. Chem. Soc. 1995,
- (3) Allcock, H. R. Chem. Mater. 1994, 6, 1476.
- (4) Carriedo, G. A.; Fernández-Catuxo, L.; García-Alonso, F. J.; Gómez-Elipe, P.; González, P. A.; Sánchez. G. *J. Appl. Polym. Sci.* **1996**, *59*, 1879.
- (5) (a) Kumar, D.; Gupta, A. D. Macromolecules 1995, 28, 6323. (a) Kulmar, D.; Gupta, A. D. Macromorectures 1995, 28, 0525.
 (b) Pelc, R. A.; Brandt, K.; Jedlinski, Z. Phosphorous, Sulfur, Silicon Relat. Elem. 1990, 47, 375. (c) Allcock, H. R.; Turner, M. L.; Visscher, K. B. Inorg. Chem. 1992, 31, 4354. (d) Allcock, H. R.; Kugel, R. L. Inorg. Chem. 1966, 5, 1026.
 (6) Allcock, H. R.; Diefenbach, U.; Pucher, S. R. Inorg. Chem. 1904, 22, 2001.
- 1994, 33, 3091.
 Mujumdar, A. N.; Young, S. G.; Merker, R. L.; Magill, J. H. Macromolecules 1990, 23, 14.

- (8) Data for poly-THF can be found in many handbooks and catalogues. For example: Scientific Polymer Products, Inc. 1988/1989, p 58.
- (9) See, for example: Allcock, H. R.; Lampe, F. W. Contemporary Polymer Chemistry; Prentice Hall: Englewood Cliffs, 1990; Chapter 6, p 126.
- (10) Allcock, H. R.; Silverberg, E. N.; Dudley, G. K.; Pucher, S. R. Macromolecules 1994, 27, 7550.
- (11) Allcock, H. R.; Stein, M. T.; Stank, J. A. J. Am. Chem. Soc. **1971**, 93, 3173.
- (12) Allcock, H. R.; Mc Donnell, G. S.; Riding, G. H.; Manner, S. I. Chem. Mat. 1990, 2, 425.

MA951830D